Characterization and oxidoreduction properties of cytochrome c3 after heme axial ligand replacements.
نویسندگان
چکیده
Cytochrome c3 (M(r) 13,000) is a tetrahemic cytochrome in which the four heme iron atoms are coordinated by 2 histidine residues at the axial positions. The presence of several oxidoreduction centers in the same molecule raises the question of their coupling. To investigate this mechanism, four single mutations were introduced in cytochrome c3 by site-directed mutagenesis, leading to the replacement of each histidine, the sixth axial ligand of the heme iron atom, by a methionine residue. Characterization of the new set of molecules using biochemical and biophysical techniques was carried out. The novel methionine was correctly coordinated to the iron atom of hemes 3 and 4 in H25M and H70M cytochromes c3, respectively, and this coordination induced a large increase in the oxidoreduction potential of the mutated heme. In contrast, in the case of H22M and H35M cytochromes c3, in which the corresponding methionine is in an oxidized form, only slight changes in redox potential values were observed. In H22M, H25M, and H35M cytochromes c3, two conformations of the molecule were possible, in which the methionine is either free or coordinated to the iron atom. The rate constants for the electron exchange reactions between the cytochrome mutants and the hydrogenase were measured using electrochemical techniques. Distinct behaviors were revealed depending on the mutation. The values of the rate constants for the electron exchange reactions are interpreted in terms of intramolecular electron exchange among the four hemes of the cytochrome.
منابع مشابه
Site-directed mutagenesis of tetraheme cytochrome c3. Modification of oxidoreduction potentials after heme axial ligand replacement.
The nature of the axial ligands of a heme group is an important factor in maintaining the oxidation-reduction potential of a c-type cytochrome. Cytochrome c3 from Desulfovibrio vulgaris Hildenborough contains four bis-histidinyl coordinated hemes with low oxidation-reduction potentials. Site-directed mutagenesis was used to generate a mutant in which histidine 70, the sixth axial ligand of heme...
متن کاملA single mutation in the heme 4 environment of Desulfovibrio desulfuricans Norway cytochrome c3 (Mr 26,000) greatly affects the molecule reactivity.
The gene encoding Desulfovibrio desulfuricans Norway cytochrome c3 (Mr 26,000), a dimeric octaheme cytochrome belonging to the polyheme cytochrome c3 superfamily, has been cloned and successfully expressed in another sulfate reducing bacteria, D. desulfuricans G201. The gene, named cycD, is monocistronic and encodes a cytochrome precursor of 135 amino acids with an extension at the NH2 terminus...
متن کاملCooperative ligand reorientations in cytochrome c3: a molecular dynamics simulation.
Molecular dynamics simulations of a tetraheme cytochrome c3 were performed to investigate dynamic aspects of the motion of the axial heme iron ligands. It was found that persistent transitions between alternate axial imidazole orientations of the histidine incorporated in the CXXCH heme binding sequence occurred via correlated motions. The correlated motions involved virtually all of the atoms ...
متن کاملStrategic roles of axial histidines in structure formation and redox regulation of tetraheme cytochrome c3.
Tetraheme cytochrome c 3 (cyt c 3) exhibits extremely low reduction potentials and unique properties. Since axial ligands should be the most important factors for this protein, every axial histidine of Desulfovibrio vulgaris Miyazaki F cyt c 3 was replaced with methionine, one by one. On mutation at the fifth ligand, the relevant heme could not be linked to the polypeptide, revealing the essent...
متن کاملStructural bases for function in cytochromes c. An interpretation of comparative x-ray and biochemical data.
The tertiary structures of the photosynthetic cytochrome cz of Rhodospirillum rubrum and eucaryotic mitochondrial cytochrome c are compared, together with data on their physiochemical properties and activities in physiological oxidoreduction systems. The comparison gives rise to the following observations and proposals. 1. R. rubrum cytochrome cz does not undergo the extensive oxidoreduction-li...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The Journal of biological chemistry
دوره 269 9 شماره
صفحات -
تاریخ انتشار 1994